inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Octadecabromidobis(dicarbido)decadysprosium, [Dy₁₀Br₁₈(C₂)₂]

Kathrin Daub and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Received 22 November 2007; accepted 7 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.016 Å; R factor = 0.033; wR factor = 0.079; data-to-parameter ratio = 28.9.

Single crystals of $[Dy_{10}Br_{18}(C_2)_2]$ were obtained during the reaction of $DyBr_3$ with dysprosium metal and graphite in a sealed tantalum container. In the crystal structure, the Dy atoms form dimers of edge-sharing octahedra, each encapsulating a C₂ unit. The metal atoms are surrounded by Br atoms above the cluster edges and vertices, respectively. The dimers are connected to each other by Br atoms, leading to a three-dimensional network. $[Dy_{10}Br_{18}(C_2)_2]$ is isotypic with its iodido analogue $[Dy_{10}I_{18}(C_2)_2]$.

Related literature

Details of ternary and quaternary halides of the rare earth elements have been compiled by Meyer & Wickleder (2000). Bromides with the formula $[RE_{10}Br_{18}(C_2)_2]$, where RE is Gd, Tb or Er, have been studied by Liess (1996), Mattausch *et al.* (2002) and Uhrlandt *et al.* (1994). Recently, the first dysprosium compound belonging to this structural family, $[Dy_{10}I_{18}(C_2)_2]$, was reported by Mattausch *et al.* (2007). $[Dy_{10}Br_{18}(C_2)_2]$ is obtained by reduction of DyBr₃ with dysprosium and graphite. For the synthesis of the starting material DyBr₃, see Meyer *et al.* (1987).

Experimental

Crystal data

 $\begin{bmatrix} Dy_{10}Br_{18}(C_2)_2 \end{bmatrix} \\ M_r = 3111.42$

Monoclinic, $P2_1/c$ *a* = 9.7399 (12) Å

b = 16.3398 (15) A
c = 13.2469 (19) Å
$\beta = 120.869 \ (9)^{\circ}$
$V = 1809.6 (4) \text{ Å}^3$
Z = 2

Data collection

Stoe IPDSII diffractometer Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] $T_{min} = 0.015, T_{max} = 0.063$

Refinement

 $R[F^{2} > 2\sigma(F^{2})] = 0.033 \qquad 136$ $wR(F^{2}) = 0.079 \qquad \Delta \mu$ $S = 1.01 \qquad \Delta \mu$ 3935 reflections

T = 293 (2) K 0.20 × 0.20 × 0.20 mm

Mo $K\alpha$ radiation $\mu = 40.24 \text{ mm}^{-1}$

23768 measured reflections 3935 independent reflections 2989 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.096$

136 parameters $\Delta \rho_{\text{max}} = 2.44 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.75 \text{ e } \text{\AA}^{-3}$

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (SFB 608 'Complex transition metal compounds with spin and charge degrees of freedom and disorder').

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2169).

References

- Brandenburg, K. (2005). *DIAMOND*. Version 3.0d. Crystal Impact GbR, Bonn, Germany.
- Liess, H. (1996). Dr. rer. nat. dissertation, University of Hannover, Germany, pp. 59–64.
- Mattausch, H., Hoch, C. & Simon, A. (2007). Z. Naturforsch. Teil B 62, 148– 154.
- Mattausch, H., Oeckler, O. & Simon, A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 458.
- Meyer, G., Dötsch, S. & Staffel, T. (1987). J. Less-Common Met. 127, 155-160.
- Meyer, G. & Wickleder, M. S. (2000). Handbook on the Physics and Chemistry of Rare Earths, Vol. 28, edited by K. A. Gscheidner Jr & L. Eyring, pp. 53– 129. Amsterdam: Elsevier.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1999). X-SHAPE. Version 1.06. Stoe & Cie, Darmstadt, Germany.Stoe & Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe & Cie, Darmstadt, Germany.
- Uhrlandt, S., Artelt, H. M. & Meyer, G. (1994). Z. Anorg. Allg. Chem. 620, 1532–1536.

supplementary materials

Acta Cryst. (2008). E64, i4 [doi:10.1107/S1600536807066111]

Octadecabromidobis(dicarbido)decadysprosium, [Dy₁₀Br₁₈(C₂)₂]

K. Daub and G. Meyer

Comment

A number of ternary and quaternary halides of the general formulae $[\{RE_{10}(C_2)_2\}X_n]$ with RE = Gd, Tb, Er, Y; X = Cl, Br, I; n = 17-19 and $A_x[\{RE_{10}(C_2)_2\}X_n]$ with A = K, Rb, Cs; x = 1-3; n = 18-21 have been observed and were compiled by Meyer and Wickleder (2000). Among these halides, three bromides with the formula $[\{RE_{10}(C_2)_2\}Br_{18}]$, where RE is Gd, Tb, and Er, are known and were structurally studied by Ließ (1996), Mattausch *et al.* (2002) and Uhrlandt *et al.* (1994).

The crystal structure of the title compound is isotypic with the iodide analogue $[{Dy_{10}(C_2)_2}I_{18}]$ studied recently by Mattausch *et al.* (2007). As many reduced rare earth halides, the cluster compound $[{Dy_{10}(C_2)_2}Br_{18}]$ consists of an octahedral arrangement of dysprosium atoms stabilized by an interstitial C₂ dumbbell. The dysprosium octahedra are connected *via* common edges leading to the formation of dimers. The cluster cores are surrounded by bromine atoms above the cluster edges and vertices, respectively (Fig. 1). Some of the bromine atoms belong to a single dimeric unit while others connect neighbouring dimers, thus leading to a three-dimensional network (Fig. 2). Due to the slight elongation of the dysprosium octahedra established roughly parallel to the axis of the C₂ units, the Dy—Dy distances range from 3.1832 (11) to 4.0369 (9) Å. The Dy—Br distances in $[{Dy_{10}(C_2)_2}Br_{18}]$ vary between 2.7157 (15) and 3.3231 (12) Å with the distances to the edge-bridging bromine atoms that are placed between two condensed octahedra significantly larger than those to the other ligands. The C—C bond length is 1.437 (13) Å.

Experimental

Black parallelepipedic crystals of $[{Dy_{10}(C_2)_2}Br_{18}]$ were obtained by the reaction of DyBr₃ (150 mg) with dysprosium powder (85 mg, Chempur, 99,9%) and graphite (8 mg, Merck, p.a.) in a tantalum container at 1273 K. DyBr₃ had been synthesized previously according to the ammonium bromide route (Meyer *et al.*, 1987), followed by sublimation in high vacuum for purification. Due to air and moisture sensitivity of both reagents and products, all handlings were carried out in an argon-filled glove box (*M*. Braun, Garching, Germany).

Refinement

The highest peak in the final difference Fourier map is 0.99 Å from atom Dy4 and the deepest hole is 0.88 Å from the same atom.

Figures

Fig. 1. : The dimeric unit in $[{Dy_{10}(C_2)_2}Br_{18}]$ with displacement ellipsoids drawn at the 90% probability level [Symmetry codes: (i) 1 - x, 1/2 + y, 1.5 - z; (ii) x, 0.5 - y, 1/2 + z].

Fig. 2. : View of the crystal structure of [$\{Dy_{10}(C_2)_2\}Br_{18}$] emphasizing the connection between the dimers *via* bromine atoms.

Octadecabromidobis(dicarbido)decadysprosium

Crystal data	
$[Dy_{10}Br_{18}(C_2)_2]$	$F_{000} = 2628$
$M_r = 3111.42$	$D_{\rm x} = 5.710 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 14525 reflections
a = 9.7399 (12) Å	$\theta = 2.1 - 27.1^{\circ}$
<i>b</i> = 16.3398 (15) Å	$\mu = 40.24 \text{ mm}^{-1}$
c = 13.2469 (19) Å	T = 293 (2) K
$\beta = 120.869 \ (9)^{\circ}$	Parallelepiped, black
$V = 1809.6 (4) \text{ Å}^3$	$0.20\times0.20\times0.20~mm$
Z = 2	

Data collection

Stoe IPDSII	3935 independent reflections
diffractometer	5555 independent reflections
Radiation source: fine-focus sealed tube	2989 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.096$
T = 293(2) K	$\theta_{\text{max}} = 27.3^{\circ}$
φ scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: numerical	
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe &	$h = -12 \rightarrow 12$
Cie, 1999)]	
$T_{\min} = 0.015, \ T_{\max} = 0.063$	$k = -20 \rightarrow 20$
23768 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.079$ S = 1.01

3935 reflections

Extinction coefficient: 0.00038 (3) 136 parameters Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Secondary atom site location: difference Fourier map

Extinction correction: SHELXL97 (Sheldrick, 1997),

 $w = 1/[\sigma^2(F_0^2) + (0.0351P)^2]$

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\Delta \rho_{\text{max}} = 2.44 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{min} = -1.75 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Dy1	0.72140 (7)	-0.18631 (3)	0.55464 (5)	0.01642 (12)
Dy2	0.86572 (6)	-0.05763 (3)	0.81405 (4)	0.01581 (12)
Dy3	0.49120 (6)	0.16312 (3)	0.27712 (5)	0.01646 (13)
Dy4	0.66436 (6)	0.04537 (3)	0.53869 (5)	0.01672 (12)
Dy5	0.49942 (6)	-0.05623 (3)	0.23673 (5)	0.01640 (12)
Br1	0.79002 (15)	0.17718 (7)	0.46836 (11)	0.0267 (3)
Br2	0.18295 (15)	-0.05866 (7)	0.03920 (11)	0.0261 (3)
Br3	0.81121 (14)	-0.06564 (6)	0.44345 (10)	0.0199 (2)
Br4	0.19236 (15)	0.18349 (7)	0.05984 (11)	0.0270 (3)
Br5	0.60176 (17)	-0.19122 (6)	0.14246 (12)	0.0282 (3)
Br6	0.59583 (16)	0.06929 (7)	0.14910 (12)	0.0273 (3)
Br7	1.01722 (16)	-0.18152 (7)	0.75532 (12)	0.0274 (3)
Br8	0.97720 (15)	0.06689 (7)	0.73923 (11)	0.0265 (3)
Br9	0.58632 (14)	0.19733 (6)	0.66855 (10)	0.0198 (2)
C1	0.6314 (13)	-0.0891 (5)	0.6212 (9)	0.0118 (18)*
C2	0.4262 (13)	0.0309 (6)	0.3277 (9)	0.0144 (19)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Dy1	0.0185 (3)	0.0131 (2)	0.0193 (3)	0.00139 (17)	0.0109 (2)	-0.00086 (17)
Dy2	0.0133 (3)	0.0157 (2)	0.0161 (3)	-0.00058 (17)	0.0058 (2)	0.00070 (17)
Dy3	0.0170 (3)	0.0136 (2)	0.0190 (3)	-0.00068 (17)	0.0094 (2)	0.00148 (17)
Dy4	0.0136 (3)	0.0162 (2)	0.0177 (3)	-0.00185 (17)	0.0061 (2)	0.00218 (17)
Dy5	0.0162 (3)	0.0138 (2)	0.0191 (3)	0.00202 (17)	0.0089 (2)	-0.00146 (17)
Br1	0.0196 (6)	0.0273 (5)	0.0261 (6)	-0.0087 (4)	0.0066 (5)	0.0045 (4)
Br2	0.0170 (6)	0.0321 (6)	0.0209 (6)	0.0031 (4)	0.0037 (5)	-0.0070 (5)
Br3	0.0161 (6)	0.0213 (5)	0.0235 (6)	0.0005 (4)	0.0110 (5)	0.0020 (4)
Br4	0.0214 (7)	0.0287 (5)	0.0247 (6)	-0.0059 (4)	0.0073 (5)	0.0103 (4)
Br5	0.0435 (8)	0.0148 (5)	0.0400 (7)	0.0018 (4)	0.0313 (7)	-0.0017 (4)
Br6	0.0361 (7)	0.0225 (5)	0.0354 (7)	-0.0012 (5)	0.0271 (6)	0.0002 (5)
Br7	0.0191 (6)	0.0298 (5)	0.0281 (7)	0.0066 (4)	0.0083 (5)	-0.0031 (4)
Br8	0.0182 (6)	0.0291 (5)	0.0248 (6)	-0.0074 (4)	0.0057 (5)	0.0056 (4)
Br9	0.0189 (6)	0.0163 (4)	0.0235 (6)	-0.0005 (4)	0.0104 (5)	-0.0009 (4)

Geometric parameters (Å, °)

Dy1—C1	2.205 (9)	Dy4—C2	2.568 (11)
Dy1—Br7	2.7413 (15)	Dy4—C1 ⁱⁱ	2.652 (10)
Dy1—Br5 ⁱ	2.8473 (12)	Dy4—C2 ⁱⁱ	2.659 (10)
Dy1—Br3	2.8539 (12)	Dy4—Br8	2.8564 (14)
Dy1—Br9 ⁱⁱ	2.9434 (14)	Dy4—Br1	2.8591 (12)
Dy1—Br4 ⁱⁱⁱ	2.9730 (12)	Dy4—Br3	2.9630 (12)
Dy1—Dy2	3.6399 (8)	Dy4—Dy4 ⁱⁱ	3.1832 (11)
Dy1—Dy3 ⁱⁱ	3.7595 (9)	Dy4—Br9	3.3231 (12)
Dy1—Dy4	3.8163 (7)	Dy5—C2	2.207 (10)
Dy2—C1	2.453 (10)	Dy5—Br6	2.7485 (12)
Dy2—C2 ⁱⁱ	2.515 (11)	Dy5—Br2	2.8413 (14)
Dy2—Br8	2.7213 (12)	Dy5—Br3	2.8655 (14)
Dy2—Br7	2.8388 (13)	Dy5—Br9 ⁱⁱ	2.9432 (12)
Dy2—Br4 ⁱⁱ	2.8827 (12)	Dy5—Br5	2.9488 (12)
Dy2—Br2 ⁱⁱ	2.9258 (13)	Dy5—Dy2 ⁱⁱ	3.7560 (8)
Dy2—Br2 ^{iv}	2.9978 (14)	Br2—Dy2 ⁱⁱ	2.9258 (13)
Dy2—Dy3 ⁱⁱ	3.4938 (8)	Br2—Dy2 ^{vii}	2.9978 (14)
Dy2—Dy4	3.5558 (9)	Br4—Dy2 ⁱⁱ	2.8827 (12)
Dy2—Dy5 ⁱⁱ	3.7560 (8)	Br4—Dy1 ^v	2.9730 (12)
Dy3—C2	2.439 (9)	Br5—Dy1 ^{viii}	2.8473 (12)
Dy3—C1 ⁱⁱ	2.520 (10)	Br5—Dy3 ⁱⁱⁱ	2.9340 (12)
Dy3—Br1	2.7157 (15)	Br9—Dy5 ⁱⁱ	2.9432 (12)
Dy3—Br6	2.8354 (13)	Br9—Dy1 ⁱⁱ	2.9434 (14)
Dy3—Br4	2.8759 (14)	Br9—Dy3 ^{ix}	3.0812 (12)

Dy3—Br5 ^v	2.9340 (12)	C1—C2 ⁱⁱ	1.437 (13)
Dy3—Br9 ^{vi}	3.0812 (12)	C1—Dy3 ⁱⁱ	2.520 (10)
Dy3—Dy2 ⁱⁱ	3.4938 (8)	C1—Dy4 ⁱⁱ	2.652 (10)
Dy3—Dy4	3.5434 (8)	C2—C1 ⁱⁱ	1.437 (13)
Dy3—Dy5	3.6309 (7)	C2—Dy2 ⁱⁱ	2.515 (11)
Dy3—Dy1 ⁱⁱ	3.7595 (8)	C2—Dy4 ⁱⁱ	2.659 (10)
Dy4—C1	2.547 (9)		
C1—Dy1—Br7	91.6 (3)	C2—Dy4—C2 ⁱⁱ	105.0 (3)
C1—Dy1—Br5 ⁱ	90.7 (2)	C1 ⁱⁱ —Dy4—C2 ⁱⁱ	93.6 (3)
Br7—Dy1—Br5 ⁱ	94.05 (4)	C1—Dy4—Br8	90.9 (2)
C1—Dy1—Br3	89.9 (2)	C2—Dy4—Br8	163.8 (2)
Br7—Dy1—Br3	91.88 (4)	C1 ⁱⁱ —Dy4—Br8	155.9 (2)
Br5 ⁱ —Dy1—Br3	174.01 (4)	C2 ⁱⁱ —Dy4—Br8	89.9 (2)
C1—Dy1—Br9 ⁱⁱ	92.1 (3)	C1—Dy4—Br1	163.6 (2)
Br7—Dy1—Br9 ⁱⁱ	176.15 (4)	C2—Dy4—Br1	90.8 (2)
Br5 ⁱ —Dy1—Br9 ⁱⁱ	87.03 (4)	C1 ⁱⁱ —Dy4—Br1	90.5 (2)
Br3—Dy1—Br9 ⁱⁱ	87.00 (4)	C2 ⁱⁱ —Dy4—Br1	156.1 (2)
C1—Dy1—Br4 ⁱⁱⁱ	173.6 (3)	Br8—Dy4—Br1	77.27 (4)
Br7—Dy1—Br4 ⁱⁱⁱ	94.80 (4)	C1—Dy4—Br3	81.3 (2)
Br5 ⁱ —Dy1—Br4 ⁱⁱⁱ	89.28 (4)	C2—Dy4—Br3	81.0 (2)
Br3—Dy1—Br4 ⁱⁱⁱ	89.40 (4)	C1 ⁱⁱ —Dy4—Br3	112.9 (2)
Br9 ⁱⁱ —Dy1—Br4 ⁱⁱⁱ	81.51 (4)	C2 ⁱⁱ —Dy4—Br3	113.2 (2)
C1—Dy1—Dy2	41.1 (3)	Br8—Dy4—Br3	87.35 (4)
Br7—Dy1—Dy2	50.46 (3)	Br1—Dy4—Br3	86.65 (4)
Br5 ⁱ —Dy1—Dy2	93.50 (3)	C1—Dy4—Dy4 ⁱⁱ	53.8 (2)
Br3—Dy1—Dy2	90.92 (3)	C2—Dy4—Dy4 ⁱⁱ	53.8 (2)
Br9 ⁱⁱ —Dy1—Dy2	133.21 (3)	C1 ⁱⁱ —Dy4—Dy4 ⁱⁱ	50.8 (2)
Br4 ⁱⁱⁱ —Dy1—Dy2	145.25 (3)	C2 ⁱⁱ —Dy4—Dy4 ⁱⁱ	51.2 (2)
C1—Dy1—Dy3 ⁱⁱ	40.3 (2)	Br8—Dy4—Dy4 ⁱⁱ	140.68 (4)
Br7—Dy1—Dy3 ⁱⁱ	92.68 (3)	Br1—Dy4—Dy4 ⁱⁱ	140.71 (4)
Br5 ⁱ —Dy1—Dy3 ⁱⁱ	50.45 (2)	Br3—Dy4—Dy4 ⁱⁱ	101.73 (3)
Br3—Dy1—Dy3 ⁱⁱ	130.11 (3)	C1—Dy4—Br9	108.0 (2)
Br9 ⁱⁱ —Dy1—Dy3 ⁱⁱ	90.85 (3)	C2—Dy4—Br9	108.3 (2)
Br4 ⁱⁱⁱ —Dy1—Dy3 ⁱⁱ	139.48 (3)	C1 ⁱⁱ —Dy4—Br9	76.7 (2)
Dy2—Dy1—Dy3 ⁱⁱ	56.324 (16)	C2 ⁱⁱ —Dy4—Br9	76.3 (2)
C1—Dy1—Dy4	39.8 (2)	Br8—Dy4—Br9	81.07 (4)
Br7—Dy1—Dy4	94.36 (3)	Br1—Dy4—Br9	81.70 (4)
Br5 ⁱ —Dy1—Dy4	129.89 (3)	Br3—Dy4—Br9	165.10 (3)
Br3—Dy1—Dy4	50.25 (2)	Dy4 ⁱⁱ —Dy4—Br9	93.17 (3)
Br9 ⁱⁱ —Dy1—Dy4	87.75 (2)	C1—Dy4—Dy3	141.9 (2)
Br4 ⁱⁱⁱ —Dy1—Dy4	138.84 (3)	C2—Dy4—Dy3	43.5 (2)

supplementary materials

Dy2—Dy1—Dy4	56.906 (14)	C1 ⁱⁱ —Dy4—Dy3	45.2 (2)
Dy3 ⁱⁱ —Dy1—Dy4	79.866 (14)	C2 ⁱⁱ —Dy4—Dy3	138.7 (2)
C1—Dy2—C2 ⁱⁱ	33.6 (3)	Br8—Dy4—Dy3	126.02 (3)
C1—Dy2—Br8	96.3 (2)	Br1—Dy4—Dy3	48.77 (3)
C2 ⁱⁱ —Dy2—Br8	96.2 (2)	Br3—Dy4—Dy3	90.43 (3)
C1—Dy2—Br7	84.4 (2)	Dy4 ⁱⁱ —Dy4—Dy3	92.44 (2)
C2 ⁱⁱ —Dy2—Br7	117.8 (2)	Br9—Dy4—Dy3	88.85 (3)
Br8—Dy2—Br7	94.17 (4)	C1—Dy4—Dy2	43.6 (2)
C1—Dy2—Br4 ⁱⁱ	95.7 (2)	C2—Dy4—Dy2	142.0 (2)
C2 ⁱⁱ —Dy2—Br4 ⁱⁱ	94.2 (2)	C1 ⁱⁱ —Dy4—Dy2	138.4 (2)
Br8—Dy2—Br4 ⁱⁱ	167.98 (4)	C2 ⁱⁱ —Dy4—Dy2	44.9 (2)
Br7—Dy2—Br4 ⁱⁱ	86.23 (4)	Br8—Dy4—Dy2	48.74 (3)
C1—Dy2—Br2 ⁱⁱ	116.5 (2)	Br1—Dy4—Dy2	126.00 (3)
C2 ⁱⁱ —Dy2—Br2 ⁱⁱ	82.9 (2)	Br3—Dy4—Dy2	90.82 (3)
Br8—Dy2—Br2 ⁱⁱ	89.27 (4)	Dy4 ⁱⁱ —Dy4—Dy2	92.53 (2)
Br7—Dy2—Br2 ⁱⁱ	158.35 (4)	Br9—Dy4—Dy2	88.56 (3)
Br4 ⁱⁱ —Dy2—Br2 ⁱⁱ	86.07 (4)	Dy3—Dy4—Dy2	174.519 (19)
C1—Dy2—Br2 ^{iv}	165.5 (2)	C1—Dy4—Dy1	33.6 (2)
C2 ⁱⁱ —Dy2—Br2 ^{iv}	159.6 (2)	C2—Dy4—Dy1	89.6 (2)
Br8—Dy2—Br2 ^{iv}	88.07 (4)	C1 ⁱⁱ —Dy4—Dy1	112.27 (19)
Br7—Dy2—Br2 ^{iv}	81.56 (4)	C2 ⁱⁱ —Dy4—Dy1	65.6 (2)
Br4 ⁱⁱ —Dy2—Br2 ^{iv}	80.09 (4)	Br8—Dy4—Dy1	90.87 (3)
Br2 ⁱⁱ —Dy2—Br2 ^{iv}	77.19 (4)	Br1—Dy4—Dy1	133.69 (3)
C1—Dy2—Dy3 ⁱⁱ	46.2 (2)	Br3—Dy4—Dy1	47.77 (2)
C2 ⁱⁱ —Dy2—Dy3 ⁱⁱ	44.3 (2)	Dy4 ⁱⁱ —Dy4—Dy1	69.484 (18)
Br8—Dy2—Dy3 ⁱⁱ	139.04 (3)	Br9—Dy4—Dy1	141.07 (3)
Br7—Dy2—Dy3 ⁱⁱ	96.80 (3)	Dy3—Dy4—Dy1	125.134 (19)
Br4 ⁱⁱ —Dy2—Dy3 ⁱⁱ	52.56 (3)	Dy2—Dy4—Dy1	59.047 (14)
Br2 ⁱⁱ —Dy2—Dy3 ⁱⁱ	94.50 (3)	C2—Dy5—Br6	91.4 (3)
Br2 ^{iv} —Dy2—Dy3 ⁱⁱ	132.53 (3)	C2—Dy5—Br2	90.6 (3)
C1—Dy2—Dy4	45.7 (2)	Br6—Dy5—Br2	93.77 (4)
C2 ⁱⁱ —Dy2—Dy4	48.3 (2)	C2—Dy5—Br3	89.6 (3)
Br8—Dy2—Dy4	52.09 (3)	Br6—Dy5—Br3	91.11 (4)
Br7—Dy2—Dy4	98.46 (3)	Br2—Dy5—Br3	175.10 (4)
Br4 ⁱⁱ —Dy2—Dy4	139.75 (3)	C2—Dy5—Br9 ⁱⁱ	91.8 (3)
Br2 ⁱⁱ —Dy2—Dy4	100.49 (3)	Br6—Dy5—Br9 ⁱⁱ	176.15 (4)
Br2 ^{iv} —Dy2—Dy4	140.15 (3)	Br2—Dy5—Br9 ⁱⁱ	88.32 (4)
Dy3 ⁱⁱ —Dy2—Dy4	87.228 (19)	Br3—Dy5—Br9 ⁱⁱ	86.79 (3)
C1—Dy2—Dy1	36.2 (2)	C2—Dy5—Br5	171.1 (3)
C2 ⁱⁱ —Dy2—Dy1	69.8 (2)	Br6—Dy5—Br5	96.68 (4)
Br8—Dy2—Dy1	96.95 (3)	Br2—Dy5—Br5	92.42 (4)
Br7—Dy2—Dy1	48.13 (3)	Br3—Dy5—Br5	86.67 (4)

Br4 ⁱⁱ —Dy2—Dy1	92.26 (3)	Br9 ⁱⁱ —Dy5—Br5	79.99 (3)
Br2 ⁱⁱ —Dy2—Dy1	152.46 (3)	C2—Dy5—Dy3	41.0 (3)
Br2 ^{iv} —Dy2—Dy1	129.62 (3)	Br6—Dy5—Dy3	50.49 (3)
Dy3 ⁱⁱ —Dy2—Dy1	63.568 (16)	Br2—Dy5—Dy3	93.10 (3)
Dy4—Dy2—Dy1	64.047 (17)	Br3—Dy5—Dy3	90.27 (2)
C1—Dy2—Dy5 ⁱⁱ	68.1 (2)	Br9 ⁱⁱ —Dy5—Dy3	132.68 (3)
C2 ⁱⁱ —Dy2—Dy5 ⁱⁱ	34.5 (2)	Br5—Dy5—Dy3	146.99 (3)
Br8—Dy2—Dy5 ⁱⁱ	94.73 (3)	C2—Dy5—Dy2 ⁱⁱ	40.2 (3)
Br7—Dy2—Dy5 ⁱⁱ	151.85 (3)	Br6—Dy5—Dy2 ⁱⁱ	92.98 (3)
Br4 ⁱⁱ —Dy2—Dy5 ⁱⁱ	90.45 (3)	Br2—Dy5—Dy2 ⁱⁱ	50.35 (3)
Br2 ⁱⁱ —Dy2—Dy5 ⁱⁱ	48.39 (3)	Br3—Dy5—Dy2 ⁱⁱ	129.76 (3)
Br2 ^{iv} —Dy2—Dy5 ⁱⁱ	125.37 (3)	Br9 ⁱⁱ —Dy5—Dy2 ⁱⁱ	90.84 (3)
Dy3 ⁱⁱ —Dy2—Dy5 ⁱⁱ	59.980 (16)	Br5—Dy5—Dy2 ⁱⁱ	142.13 (3)
Dy4—Dy2—Dy5 ⁱⁱ	66.960 (16)	Dy3—Dy5—Dy2 ⁱⁱ	56.425 (13)
Dy1—Dy2—Dy5 ⁱⁱ	104.213 (19)	C2—Dy5—Dy4	39.8 (3)
C2—Dy3—C1 ⁱⁱ	33.6 (3)	Br6—Dy5—Dy4	93.80 (3)
C2—Dy3—Br1	97.1 (3)	Br2—Dy5—Dy4	129.92 (3)
C1 ⁱⁱ —Dy3—Br1	96.7 (2)	Br3—Dy5—Dy4	49.90 (3)
C2—Dy3—Br6	84.8 (2)	Br9 ⁱⁱ —Dy5—Dy4	87.31 (3)
C1 ⁱⁱ —Dy3—Br6	118.3 (2)	Br5—Dy5—Dy4	135.47 (3)
Br1—Dy3—Br6	93.53 (4)	Dy3—Dy5—Dy4	56.545 (13)
C2—Dy3—Br4	96.1 (3)	Dy2 ⁱⁱ —Dy5—Dy4	79.862 (17)
C1 ⁱⁱ —Dy3—Br4	94.4 (2)	Dy3—Br1—Dy4	78.88 (3)
Br1—Dy3—Br4	166.85 (4)	Dy5—Br2—Dy2 ⁱⁱ	81.26 (3)
Br6—Dy3—Br4	87.35 (4)	Dy5—Br2—Dy2 ^{vii}	173.49 (5)
C2—Dy3—Br5 ^v	116.5 (2)	Dy2 ⁱⁱ —Br2—Dy2 ^{vii}	102.81 (4)
C1 ⁱⁱ —Dy3—Br5 ^v	82.9 (2)	Dy1—Br3—Dy5	94.31 (4)
Br1—Dy3—Br5 ^v	88.59 (4)	Dy1—Br3—Dy4	81.98 (3)
Br6—Dy3—Br5 ^v	158.19 (4)	Dy5—Br3—Dy4	82.40 (3)
Br4—Dy3—Br5 ^v	85.82 (4)	Dy3—Br4—Dy2 ⁱⁱ	74.70 (3)
C2—Dy3—Br9 ^{vi}	165.0 (2)	Dy3—Br4—Dy1 ^v	100.81 (4)
C1 ⁱⁱ —Dy3—Br9 ^{vi}	160.6 (2)	Dy2 ⁱⁱ —Br4—Dy1 ^v	175.51 (5)
Br1—Dy3—Br9 ^{vi}	86.44 (4)	Dy1 ^{viii} —Br5—Dy3 ⁱⁱⁱ	81.11 (3)
Br6—Dy3—Br9 ^{vi}	80.48 (3)	Dy1 ^{viii} —Br5—Dy5	175.47 (5)
Br4—Dy3—Br9 ^{vi}	80.76 (3)	Dy3 ⁱⁱⁱ —Br5—Dy5	102.63 (4)
Br5 ^v —Dy3—Br9 ^{vi}	77.99 (3)	Dy5—Br6—Dy3	81.10 (3)
C2—Dy3—Dy2 ⁱⁱ	46.0 (3)	Dy1—Br7—Dy2	81.41 (4)
C1 ⁱⁱ —Dy3—Dy2 ⁱⁱ	44.6 (2)	Dy2—Br8—Dy4	79.17 (3)
Br1—Dy3—Dy2 ⁱⁱ	139.84 (3)	Dy5 ⁱⁱ —Br9—Dy1 ⁱⁱ	90.85 (3)
Br6—Dy3—Dy2 ⁱⁱ	97.22 (3)	Dy5 ⁱⁱ —Br9—Dy3 ^{ix}	99.30 (4)
Br4—Dy3—Dy2 ⁱⁱ	52.74 (3)	Dy1 ⁱⁱ —Br9—Dy3 ^{ix}	96.84 (4)

supplementary materials

Br5 ^v —Dy3—Dy2 ⁱⁱ	95.05 (3)	Dy5 ⁱⁱ —Br9—Dy4	79.96 (3)
Br9 ^{vi} —Dy3—Dy2 ⁱⁱ	133.46 (3)	Dy1 ⁱⁱ —Br9—Dy4	79.62 (3)
C2—Dy3—Dy4	46.4 (3)	Dy3 ^{ix} —Br9—Dy4	176.35 (4)
C1 ⁱⁱ —Dy3—Dy4	48.3 (2)	C2 ⁱⁱ —C1—Dy1	174.9 (7)
Br1—Dy3—Dy4	52.35 (3)	C2 ⁱⁱ —C1—Dy2	75.6 (6)
Br6—Dy3—Dy4	98.89 (3)	Dy1—C1—Dy2	102.7 (4)
Br4—Dy3—Dy4	140.45 (3)	C2 ⁱⁱ —C1—Dy3 ⁱⁱ	70.1 (5)
Br5 ^v —Dy3—Dy4	99.56 (3)	Dy1—C1—Dy3 ⁱⁱ	105.2 (3)
Br9 ^{vi} —Dy3—Dy4	138.77 (3)	Dy2—C1—Dy3 ⁱⁱ	89.3 (3)
Dy2 ⁱⁱ —Dy3—Dy4	87.713 (18)	C2 ⁱⁱ —C1—Dy4	78.3 (5)
C2—Dy3—Dy5	36.4 (2)	Dy1—C1—Dy4	106.6 (4)
C1 ⁱⁱ —Dy3—Dy5	70.0 (2)	Dy2—C1—Dy4	90.7 (3)
Br1—Dy3—Dy5	97.29 (3)	Dy3 ⁱⁱ —C1—Dy4	147.4 (4)
Br6—Dy3—Dy5	48.41 (2)	C2 ⁱⁱ —C1—Dy4 ⁱⁱ	70.8 (6)
Br4—Dy3—Dy5	93.11 (3)	Dy1—C1—Dy4 ⁱⁱ	111.5 (4)
Br5 ^v —Dy3—Dy5	152.68 (3)	Dy2—C1—Dy4 ⁱⁱ	145.5 (4)
Br9 ^{vi} —Dy3—Dy5	128.83 (3)	Dy3 ⁱⁱ —C1—Dy4 ⁱⁱ	86.4 (3)
Dy2 ⁱⁱ —Dy3—Dy5	63.595 (14)	Dy4—C1—Dy4 ⁱⁱ	75.5 (3)
Dy4—Dy3—Dy5	64.703 (15)	C1 ⁱⁱ —C2—Dy5	175.8 (8)
C2—Dy3—Dy1 ⁱⁱ	68.1 (2)	C1 ⁱⁱ —C2—Dy3	76.3 (5)
C1 ⁱⁱ —Dy3—Dy1 ⁱⁱ	34.5 (2)	Dy5—C2—Dy3	102.7 (4)
Br1—Dy3—Dy1 ⁱⁱ	95.23 (4)	C1 ⁱⁱ —C2—Dy2 ⁱⁱ	70.8 (6)
Br6—Dy3—Dy1 ⁱⁱ	152.30 (3)	Dy5—C2—Dy2 ⁱⁱ	105.2 (4)
Br4—Dy3—Dy1 ⁱⁱ	89.95 (3)	Dy3—C2—Dy2 ⁱⁱ	89.7 (3)
Br5 ^v —Dy3—Dy1 ⁱⁱ	48.44 (2)	C1 ⁱⁱ —C2—Dy4	77.3 (6)
Br9 ^{vi} —Dy3—Dy1 ⁱⁱ	126.24 (3)	Dy5—C2—Dy4	106.8 (4)
Dy2 ⁱⁱ —Dy3—Dy1 ⁱⁱ	60.109 (16)	Dy3—C2—Dy4	90.0 (3)
Dy4—Dy3—Dy1 ⁱⁱ	66.772 (17)	Dy2 ⁱⁱ —C2—Dy4	147.2 (4)
Dy5—Dy3—Dy1 ⁱⁱ	104.320 (16)	C1 ⁱⁱ —C2—Dy4 ⁱⁱ	69.7 (5)
C1—Dy4—C2	98.4 (3)	Dy5—C2—Dy4 ⁱⁱ	111.8 (4)
C1—Dy4—C1 ⁱⁱ	104.5 (3)	Dy3—C2—Dy4 ⁱⁱ	145.0 (4)
C2—Dy4—C1 ⁱⁱ	31.9 (3)	Dy2 ⁱⁱ —C2—Dy4 ⁱⁱ	86.8 (3)
C1—Dy4—C2 ⁱⁱ	32.0 (3)	Dy4—C2—Dy4 ⁱⁱ	75.0 (3)

Symmetry codes: (i) x, -y-1/2, z+1/2; (ii) -x+1, -y, -z+1; (iii) -x+1, y-1/2, -z+1/2; (iv) x+1, y, z+1; (v) -x+1, y+1/2, -z+1/2; (vi) x, -y+1/2, z-1/2; (vii) x-1, y, z-1; (viii) x, -y-1/2, z-1/2; (ix) x, -y+1/2, z+1/2.

Fig. 1

Fig. 2

